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A study of the efficiency of functions related to the MDKS formula in sorting the triplet invariants was 
performed on eight solved structures. Both D and S terms were checked separately. A new mixed function 
D + S is described. The K scale factor departs from the commonly used values and depends on the nature 
of the structure. 

Introduction 

In crystal structure determination, the number of un- 
known parameters is much less than the number of 
available data. Thus we have an overdetermined sys- 
tem and relations between the data may be computed. 

For instance, the triplet cosine invariants may be 
estimated from the moduli of structure factors and 
their use in direct methods is a valuable improvement. 

If agreement is reached on the dependence of the 
triplet cosine invariants on the moduli of the (normal- 
ized) structure factors, problems begin with the math- 
ematical formulation of this dependence. Indeed, the 
mathematical approach is complicated and approx- 
imations must always be made. 

In our view, the accuracy of the experimental data is 
not sufficient to obtain triplet cosine invariants from a 
mathematical equation. The different cosine invariant 
computations merely provide a means of sorting the 
cosine invariants rather than the exact value of the 
cosines (Busetta & Comberton, 1974). 

The triplet cosine invariants are considered as 
depending on statistical moments of increasing order: 
moment of order 1/I/N, i.e. 

IEHIEHzEH1 + n  2 ] 

(N = number of atoms in the cell); 
moment of order 1/N, i.e. 

(lEg[ 2 - 1 )  ([EH1 +g[ z -  1) 
K 

n t- ( [ E K I  2 - -  1) ([EH 1 + H2 + K[ 2 - -  1) 

+(IEH1 +glZ_ 1) (lEna +He +gl 2 -  1); 

moment of order 1/N~/N, i.e. 

(IEKI z -  1) (IEH1 +gl z -  1) (IEH1 +Hg+KI z -  1). 
K 

In a recent paper (Giacovazzo, 1976) the posititivity 
of the triplet cosine invariants in P]- is related to the 
values of the moments of order 1IN (called Q) and 

1/(N]/N) (called A) by a function G=k[1  + A/(1 +Q)], 
where k is positive, and 1 + Q corresponds to the vari- 
ance associated with the value of A. 

Another suitable function to sort the triplet cosine 
invariants (Hauptman, 1972) is the constrained MDKS 
formula where D is a constrained (or conditional) 
form of A: 

D =  (ell1 + H2 + K[IEK[ > t, lEna + K[ > t)K 

with eH=IEuIV--(IEgIV)K (p is generally 2), and S a 
constrained form of Q: 

S = (ell1 + g lEg[ > t)g + (g, n2 + K lEg[ > t)g 
+ @n3+g Egl>t)g.  

A fast computation of D was described in a previous 
paper (Busetta, 1976). With Giacovazzo's (1976) nota- 
tion, the sorting function involved by the MDKS 
formula is H = m ( A -  kQ) where k and m are positive. 
The triplet cosine invariant and Q vary in opposite 
senses. Conversely, a recent approximation [Giaco- 
vazzo (1976), equation (12)] forecasts variations in the 
same sense: 

2 12 B = I + Q ~ -  -fi(lEnx +[EHaIa-t-IEHI +H2[ 2) 

--3 ( I + +  [EH1EH2EHI +HzI COS q~) • 

To clear up this problem we checked these expres- 
sions on different solved structures. 

Sorting factor 

We have pointed out that the largest errors in the 
estimated triplet cosine invariants are due to positive 
cosines computed negative or near zero (Busetta & 
Comberton, 1974; Busetta, 1976). As the actual number 
of positive cosines is much greater than the number of 
negative ones, the number of cosines wrongly estimated 
as negative is sufficiently large to give a mean error 
between the estimated and actual cosine invariants 
greater than the corresponding error obtained if all 
the cosines were set equal to + 1-0. 

This is why we introduced the weight A" m K (Busetta 
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& Comberton, 1974) using only the positive estimated 
triplet cosines. Because of these spurious negative 
cosines, in order to compare easily the efficiency of 
different formulae for a number of solved structures, 
it is meaningless to use the mean error in the estimated 
triplet cosine invariants. We define therefore a sorting 
factor as follows. The triplet cosine invariants are 
grouped in sets of 100 elements in which 
An. K(2a3/a3/ZIEHEKEH_K[) may be considered as con- 
stant. In a set, the mean cosine invariant is COSmoy , 
roughly equal to the theoretical value 11(A)/Io(A). We 
d e n o t e  COStrue(+ ) and COStrue(-) as the averages respec- 
tively of the actual 25 greatest and 25 least cosine 
invariants. Then, the triplet invariants of this set are 
ranked according to decreasing values of the sorting 
F function. We denote C O S e s t ( + )  and COSest(_) as the mean 
values of the actual cosine invariants of the 25 triplet 
invariants respectively at the top and bottom of this 
sorted list. 

The efficiency of the sorting may be defined by the 
ratios: 

__ COSes t (  - ) - -  C O S m o y  a +  - -  C O S e s t ( + ) - - C O S m ° y  a _  = 

C O S t r u e (  + ) - -  C O S m o y  C O S t r u e (  - ) - -  C O S m o y  

a + is the sorting factor corresponding to the top of the 
ranked list and a_ to the bottom. The spurious negative 
estimation of positive invariants involves a + > a_. 

The maximum value of a is +1,  where the 25 
greatest (or least) cosine invariants are correctly 
selected (perhaps not in the right order, but as all the 
proposed formulae involve a values far from + 1, this 
drawback is no problem). An a value near zero proves 
no efficiency of the sorting function while a negative 
value means that the sorting function must work in the 
reverse sense. 

In this paper, we report for each test a single value 
which is the average of the a values of the different sets 
of 100 cosine invariants. 

M i x e d  f u n c t i o n  

In each set of 100 cosine invariants, associated with a 
given mean A value, the mean triplet cosine invariant 
is II(A)/Io(A) associated with a r.m.s.d, acos(A) (Haupt- 
man, 1972). 

The actual values of the cosine invariants (a = 0) are 
supposed to follow the theoretical distribution fA 
(Hauptman, Fisher, Hancock & Norton, 1969). If, with 
a sorting function D, the rank rD is attributed to a 
triplet cosine invariant its most probable value is: 

II(A) 
aDf Al(ro)+(1--aD) Io(A) 

associated with a r.m.s.d, a=]/(1-ao)a~os(A),  where 
0 < ao < 1 is the estimated efficiency of the sorting func- 
tion D (Busetta & Comberton, 1974). 

Another sorting function S will give for the same 
cosine invariant 

asf  Tt l(rs) + (1--as) 
I,(A) 
Io(A) 

associated with a r.m.s.d, a = ]/(1 - as)acos(A). 
Combination of these two values, weighted by 1/a 2, 

provides a new most probable cosine: 

1 1 

1 - a s  1 - aD 

I1(.4)] 

1 [ Ia(A)~ 
+ l_---~s asf  Aa(rs)+(m--as) i-o--~jj, 

as 1--aD f A l(rs) 
aD 1 -- aS 

+ 2  1--aD II(A)'( (2) 

that is to say 

(1 - as)aD {fAl(rD)+ 
2 -- aS -- C~O 

For each function S (or D) two sorting factors as + and 
as-  (or aD + and aD-) are defined according to whether 
the rank rs (or rD) corresponds to the top or the bot tom 
of the ranked list. We use a + if f -  l(r) > I a(A)/Io(A) and 
a_ if not. If S and D have their MDKS meaning, (2) 
may be considered as a modified MDKS formula, 
where K may have four different values corresponding 
to (aD +, as +), (a ,  +, as-  ), ... 

D e p e n d e n c e  o f  the  s t r u c t u r e  

Theoretically, direct methods deal with randomly dis- 
tributed atoms. This is not the case in most actual 
structures where some dominant features (polycyclic 
framework, full extended chain, etc.) involve a large 
number of Patterson overlaps. The presence of coin- 
cident interatomic vectors results in an increase in the 
average values (([EKI2--1)2)K and ((IEK[2--1)3)K 
(Hauptman, 1964). 

It was pointed out that, in this case, the MDKS 
formula is more efficient for computing the triplet 
cosine invariants than the usual triple-products formula 
or D (Duax, Weeks & Hauptman, 1972). We intend to 
check on solved structures the efficiency of the S term 
in sorting the triplet cosine invariants. 

Table 1 gives the sorting factors obtained with S, D, 
and S+D as sorting functions for different solved 
structures, according to increasing values of (([EKI 2 -  
1 ) 2 ) K  . All the computations were done with p = 0.50 in 
the expressions for S and D to avoid discrepancies pro- 
duced by large values of E. When both as+ and as-  
were computed negative, a new sorting was done ac- 
cording to the increasing values of S, i.e. in the sense 
used in the MDKS formula. 

The use of the D function in sorting the triplet cosine 
invariants is always worthwhile and should be standard 
in direct methods. Except in the case of CAF (see the 
first column in Table 1 for the abbreviations) the ao+ 
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values are always > 0.20. The co+ = 0.90 observed in 
the case of the centrosymmetric structure FUR is not 
significant. When sorting with the S function, the sort- 
ing factor decreases as the mean value m= ((IErl 2 -  
1)2)r increases. For small values of m (say m < 1-8), es 
is positive. S must work in the sense forecast in Giaco- 
vazzo's approximation. For large values of m (m > 1"8) 
C~s is negative. Then S must work in the sense forecast 
in MDKS. 

When m < 1-8 the mixed S + D function does not give 
a more efficient sorting than D. In this case S and D 
influence the triplet cosines in the same way, i.e. S in- 
volves roughly the same errors as D. Conversely, when 
m is large, we have generally ~s+o>O~s+O~o and S 
seems to correct the errors involved in D. 

Dependence on the mathematical expressions used in S 
and D 

Table 2 gives the sorting factors observed in the estima- 
tion of the triplet cosine invariants for different values 
of p in the expressions of S and D. To save core during 
the computations and also to avoid discrepancies 
which may be involved by large values of [El p, we fixed 
the upper value of IEI p at 2.56. 

For D, it is difficult to find a general law and the 
results are roughly the same whatever the value of p, 
except in the case of CAF for which p = 2 seems more 
efficient. 

For S, the required expression is different according 
to the nature of the structure. When there are few 

Table 1. Dependence of the sorting factors on the nature of the structure 

as corresponds to sorting according to increasing values of S (MDKS sense). 

Theoretical 
AZE 3-chloro-l,2,4-triphenylazetidin- 

2-one, Pca21, 2(C1NsO21H16) 
(Colens, Declercq, Germain, Putzeys & 
van Meerssche, 1974) 

EST 2,3-dimethoxy- 13,8-diazaestron 
P 2 1 2 1 2 ~ ,  C I 7 0 3 N z H z /  

(unpublished results) 
DEA deaza-l-isotubercidin picrate 

P2x, C12H16N304. C6H2N307 
(Ducruix, Riche & Pascard, 1976) 

TIM timolol maleate 
P1, 2(SOaNgC13H24. C404H4) 
(Gadret & Leger, to be published) 

VAL valinomycin, P1 
2(C54H9oN601s) (Karle, 1975) 

CAF complex caffein-sulfanylamide 
P21/c, C s N 4 O E H l o - S O 3 N 2 C s H l o  

(Gadret, Carpy & Leger, to be published) 
DAU daunomycin hydrochloride P21 

C27H29NO 1o.HCI 
(Courseille, to be published) 

FUR ethyl furocoumarylate P21/n 
C1405H1o 
(Bravic, to be published) 

((IEKI 2 <(IEKI 2 
- - 1 ) 2 ) K  - -  1 ) 3 ) K  

1.00 2.00 
aS + a s  - a s  + a s  - aD + aD - a s  + D + a s  + D - 

1"204 3 " 2 2 7  0 " 1 6 8  0"111 0"491 0 " 3 2 3  0 " 5 0 7  0"310 

1"418 4"795 -0"016 0"013 0"211 0"204 0 " 1 9 9  0"216 

1"529 5 " 6 6 7  0 " 0 6 6  0"063 0"354 0"270 0 " 3 5 6  0"276 

1"575 6 " 0 3 6  0 " 0 6 1  0"028 

1"916 9"57s  --0"066 -0"027 0.079 0.034 

0"499 0 " 3 3 6  0 " 4 9 9  0"333 

0"413 0 " 2 5 8  0.418 0"281 

2"001 9"216 -0"219 -0"082 0"245 0"073  0 " 0 6 5  0"220 0"351  0"298 

2"008 12"642 -0"196 -0"111 0"226 0"096  0 " 2 8 3  0 " 1 1 7  0"341  0"227 

3"346 25"65o -0"333 -0"085 0"254 0"111  0 " 9 0 0  0 " 6 8 7  0"900 0"697 

Table 2. Dependence of the sorting factors on the mathematical expression used for S and D 

For each structure the a+ and a_ factors are reported respectively in the right and the left columns. For structures with ((IE] 2 - 1) 2) > 1.8 the 

p =0"25 
0.50 
1.00 
2.00 
3.00 

p=0.25 
0.50 
1-00 
2.00 

sorting was according to increasing values of S (i.e. MDKS sense). 

AZE EST VAL CAF 

0"178 
0"272 
0"324 
0-319 

0"491 
0"489 
0.491 

0.109 -0.016 0.013 0.079 
0.153 0.001 -0.014 0"108 
0.181 0.038 0.017 0.065 
0.188 

0.323 0 - 2 1 1  0.204 0.413 
0.320 0.209 0.192 0.451 
0-330 0.229 0.197 0.491 

DAU FUR 
0.183 0.105 

0.034 0-245 0.073 0.226 0.093 0.254 0-111 
0.032 0-167 0.041 0-153 0.057 0.225 0"093 
0.030 -0.044 0 - 0 4 1  0.131 0.059 0.083 0.067 

0.267 0.109 
0.258 0 " 0 6 5  0.220 0.280 0 - 1 2 1  0-900 0.687 
0.264 0.081 0.180 0.311 0.115 0.860 0.657 
0-305 0.149 0.206 0-263 0-129 0-860 0-708 
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S B=4"0 

Table 3. Influence o f  wrong thermal parameters on the sorting factors 

All the computations were performed with p = 0.50. The actual mean thermal parameter is underlined. 

AZE TIM CAF DAU 
0"168 0"111 B = 4 " 5 0  0"014 0"024 B=0"5 0"214 0"064 B=0"8 0.204 0"077 

B = 8-0 0-201 0"049 B = 6-00 0"024 0"025 B = 4"0 0.245 0"073 B = 3"50 0"211 0"089 

B=7"60 0"061 0-028 B=4"90 0"216 0-091 
B = 9-10 0-097 0"029 B = 6"50 0"207 0"088 

B=4"0 0-491 0"324 B=4.50 0.456 0"315 B=0.5 0"296 0"225 B=0.8 0"174 0"082 
B=8.0 0"295 0"192 B = 6 " 0 0  0"481 0-323 B=4"0 0"065 0"220 B=3.50 0"276 0"120 

B=7.60 0"499 0"336 B=4.90 0"297 0"123 
B=9"10 0"474 0.268 B=6.50 0"288 0-106 

Patterson overlaps (m< 1.8) the best value of p is 2. 
Conversely, when a large number of Patterson overlaps 
occur (m > 1.8) a p value near 0.5 is best. 

Error involved by errors in E factors 

The theory deals with ideal values, but this is not the 
case in practice. First, the observed structure factors 
are affected by unavoidable experimental errors, but 
the main errors in the E factors are due to a wrong 
determination of the mean thermal parameter. For  in- 
stance, when the resolution is too low, and this is often 
the case with large molecules, the computed thermal 
parameter is underestimated. 

We have studied how the efficiency of both S and D 
sorting functions is affected by incorrect thermal par- 
ameters. Table 3 gives the sorting factors observed in 
the estimation of triplet cosine invariants for E values 
computed with different thermal parameters. 

The efficiency of the D function remains unchanged 
for a large range of B values and therefore errors in the 
estimation of B are not troublesome. The results for 
the S function are more surprising and it seems that for 
small values of m, an unreasonable increase of B is ef- 
ficient in improving the sorting of positive triplet cosine 
invariants. An examination of the reflexions directly 
involved in the triplet invariants clearly shows that the 
ability of these reflexions to give positive cosine in- 
variants is dependent on the space vector (sin 0) of the 
reflexion and increases with increasing sin 0. This ob- 
servation may be an explanation of the improvement 
of the S sorting when B increases abnormally. 

Conclusion 

It was pointed out (Duax et al., 1972) that M D K S  'af- 

fords a better evaluation of the cosine invariants for 
structures with great overlap in the Patterson synthe- 
sis'. Conversely, the modified triple product evaluation 
is 'adequate'  when there is no extensive overlap in the 
Patterson synthesis. Our study allows us to define the 
border between these two cases [a mean value 
((IEnl 2 -  1)2)n around 1.8]. It also shows that the use 
of the M D K S  formula when no overlap occurs may be 
unwise, because K is positive in that case. 

We showed that the value o fp  in en=  IEHV--(IEI p) 
may have values between 0"5 and 2 in the evaluation 
of D, but must have fixed values (0.5 or 2) in the evalu- 
ation of S. In all the cases the use of D (or D + K S )  
affords worthwhile improvements in the determination 
of the structure by direct methods. 
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